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Abstract
Background: There is an ongoing debate about whether the cause of dyslexia (reading problems) is based on linguistic, auditory, or visual timing deficits. 

Objectives: This review of the relevant research provides substantial evidence that visual movement-discrimination can be used to detect and remediate reading 
problems in all types of dyslexia. What emerges from multiple studies is the essential role for dorsal stream function in facilitating reading fluency, selective and 
sustained attention, and working memory in both dyslexic and typically developing students between the ages of 6-8 years old. 

Methods: Specifically, training visual dorsal stream function on discriminating the direction of a dim test pattern (< 2% contrast) moving relative to a stationary 
textured background pattern is the key to facilitate reading acquisition in dyslexics and those at risk for reading problems. 

Results: Visual movement-discrimination training improves reading, attention, and working memory through the hypothetical increase in temporal precision and 
neuronal sensitivity of magnocellular neurons relative to linked parvocellular neurons in the dorsal stream. 

Conclusions: This research shows that visual movement figure/ground discrimination can be used not only to diagnose all types of dyslexia, but also to successfully 
remediate dyslexia. The results argue that a shift from phonologically-based to visually-based methods is indicated for the treatment of dyslexia.
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Introduction
Good reading ability is required for academic success. There is 

no greater educational problem than students who struggle to read. 
Estimates on the prevalence of reading problems vary from 10% [1] 
up to 80% [2], often coupled with diagnoses of dyslexia or reading 
below proficiency. Students with dyslexia and other reading difficulties 
have problems in their ability to read that are disproportionate to their 
achievements in other academic areas. Reading difficulties are prevalent 
in the United States (U.S.) where 32 million students, 64% of students in 
grades 4-12 according to NCES (2013), do not read proficiently. 

Reading is a composite skill that requires us to not only interpret the 
information that is coming in as we read each word, but also analyze and 
integrate information from different brain pathways in different areas of 
the brain to think about different ideas. Our brain must be capable of 
detecting and localizing the rapidly changing incoming patterns, e.g. 
the beginning and end of each word (this requires motion-sensitive 
magno cells) before performing detailed discrimination on those 
localized patterns to detect the letters in a word (this requires pattern-
sensitive parvo cells). Incoming information must be discriminated and 
interpreted correctly by pattern-sensitive cells for both comprehension 
and higher-level language-based processing, as well as to guide 
subsequent processing in different areas of the brain. The more attention 
and resources expended to discriminate information at lower levels of 
processing, the fewer resources that are available for processing information 
at higher levels of processing, causing attention and cognitive deficits. Slow 
and inefficient word identification creates a bottleneck that diverts cognitive 
resources required for comprehension [3,4].

What is the underlying problem in dyslexia? 

Dyslexia is a multifaceted reading disability [5,6], encompassing 
both visual processing-based and pronunciation-based reading issues, 
that is characterized by severe spelling and reading problems [7]. There is 
an ongoing debate about whether the cause of reading problems is based 
on visual timing, auditory timing, or linguistic deficits. The biological 
basis of dyslexia (reading difficulties) was for many years assumed to be 
in the brain regions responsible for the visual perception of text [8]. This 
theory has largely been replaced by other theories that propose reading 
problems results from problems in pronunciation or hearing the correct 
sounds, being caused by an auditory phonological processing deficit 
[9-18]. Many poor readers do demonstrate phonological problems, i.e. 
acquiring the skills of separating word sounds into separate phonemes 
to match with the letters that represent the syllables. The essential 
component of reading is decoding, translating letters into the sounds 
they stand for. However, the phonological theory does not explain why 
these children fail to learn to decode [19]. 

The phonological theory is set at too high a cognitive level to explain 
the cause of reading deficits [20]. Moreover, phonological deficits only 
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predict approximately 25% of future reading skills [21,22], and are not 
able to explain the full range of deficits found in struggling readers. 
Since there are a significant number of dyslexics who do not exhibit any 
phonological problems at all, a phonological deficit is not a necessary 
condition for dyslexia [23,24]. The phonological theory ignores the 
many children with dyslexia who complain of visual problems, in 
their difficulty to see printed words correctly [5,25-27]. Furthermore, 
word reading skills did not differ for those who completed an auditory 
intervention two years earlier, when compared with controls who 
had no auditory intervention [28], showing that improvements in 
phonological processing degrade over time.

A careful examination of the neuroimaging studies responsible 
for this paradigm shift from visual processing deficits to auditory 
processing deficits reveals that visual word form areas and other 
visual processing areas were also implicated in many of these studies. 
For instance, Shaywitz et al. [1] states that “Brain activation patterns 
differed significantly between the groups with dyslexic readers showing 
relative underactivation in posterior regions (Wernicke’s area, the 
angular gyrus, and striate cortex) and relative overactivation in an 
anterior region (inferior frontal gyrus)”. The finding that the visual 
(striate cortex) processing area is underactive in persons with dyslexia 
is supported by other studies [1,17,29-33] and reliably co-occurs with 
abnormal patterns of cortical activity in areas typically associated 
with auditory analyses. Therefore, these neuroimaging studies provide 
no evidence that dyslexia is caused by auditory processing deficits as 
opposed to visual processing deficits.

Dyslexia is characterized by slow reading caused by spatial 
and temporal sequencing deficits

Dyslexics typically have slow reading speeds [34,35]. Children 
with dyslexia are reported to have some combination of: 1) temporal 
[9,16,17,36], and/or 2) spatial [5,6,20,37-46] sequencing deficits. 
These temporal and spatial sequencing deficits are prevalent in patient 
reports that words on the page appear distorted, displaced, or crowded 
together [47], often resulting in headaches and eyestrain [48]. Children 
with dyslexia are slower at recognizing individual letters, and slower at 
sequencing them correctly [49]. Successful sequencing during reading 
depends on the accurate timing of auditory and visual sensory inputs. 
This timing is also known as transient or temporal processing.

Temporal and spatial sequencing deficits, found when subjects 
are shown images that are rapidly presented or moving, have been 
hypothesized to result from neural timing deficits associated with 
sluggish magnocellular neurons [5,6,31,40-46,49-55]. These studies 
suggest that the visual timing deficits cause impairments in the 
integration of information between magnocellular (‘where’) and 
parvocellular (‘what’) neurons. A normally functioning magnocellular 
pathway is sensitive to low-contrast achromatic patterns [56,57]. 
All dyslexics exhibit high contrast thresholds for discriminating 
the direction of moving patterns relative to a stationary textured 
background pattern [40-45,51,58], suggesting that visual magnocellular 
deficits may explain the timing deficits found in dyslexia. 

The role of magnocellular deficits in dyslexia
The visual system has been hypothesized to exploit the dichotomy 

of a fast-magnocellular channel and a slower parvocellular channel for 
the purpose of selective attention [52,59]. Receiving predominantly 
magnocellular input [60-62], the major dorsal stream pathway, 
specialized for processing the location and movement of objects in 
space [60,63,64], projects from the primary visual cortex, V1, through 

visual area MT (middle temporal cortex) to the medial superior 
temporal area (MST) [65], as well as projecting to V3, V3A and V6 
[66] and into the intraparietal sulcus of the posterior parietal cortex 
(PPC), a selective spatial attention area [67] that is also used to analyze 
event timing [68]. The PPC provides the input to the dorsal lateral 
prefrontal cortex (DLPFC), where working memory is encoded, the 
predominant cortical areas involved in the Executive Control Network 
[69]. This is in contrast to the ventral stream which receives both 
magnocellular and parvocellular inputs as it projects from V1 through 
area V4 and on to the infero-temporal (IT) cortex, an area specialized 
in extracting the details related to an object’s color and shape [60,63,64]. 
The faster transmission time of the magnocellular neurons projecting 
predominantly to the dorsal stream is gated via attentional feedback to 
the striate cortex [52], which can then be used by parvocellular neurons 
in the ventral stream as a starting point for deciphering the individual 
letters in a word [44,45,52-54,59]. Moreover, feedback in the dorsal 
stream from MT to V1 improves figure/ground discrimination [70], a 
task used when reading by discriminating the letters in the word from 
the remaining text. Furthermore, feedback from MT has its strongest 
effects for low salience stimuli [70], such as low contrast patterns having 
less than 10% contrast, i.e. those patterns that maximally activate 
magnocellular neurons [56,57]. 

Dyslexics have magnocellular responses that were found to be 
20-40 ms slower than typically developing observers [31], being 2-4-
fold slower than the normal magnocellular lead time of 10-20 ms 
[71,72]. Some investigators hypothesize that in dyslexics a lack of 
synchronization in timing between magnocellular and parvocellular 
activations may prevent effective sequential processing, pattern 
analysis, and figure/ground discrimination, and hence impede the 
development of efficient reading and attention skills [5,6,40-44,52-
54,73]. Our working hypothesis [40,45] is that magnocellular neurons 
in the dorsal cortical visual pathway (V1-MT) of dyslexics are sluggish, 
causing visual timing deficits at lower levels of visual processing [31,74] 
that disrupt processing at higher levels of dorsal stream processing, as 
shown by dyslexics having little or no activity in MT [29,30], including 
the development of these visual and attention pathways. These visual 
timing deficits limit reading acquisition in dyslexics. 

Convergent evidence finds that many dyslexic readers demonstrate 
impairments in movement discrimination tasks that rely upon 
magnocellular functioning. Dyslexics were found to have motion 
perception deficits at each of these levels of processing in the dorsal 
stream: 

1. the retinal level when measured using the frequency doubling 
illusion [75-79],

2. the Lateral Geniculate Nucleus (LGN) where the magnocellular 
layers were found to be 30% smaller and more disorganized [31], 

3. V1 measured using VEPs [31,33,74,80], 

4. V1 and MT using both fMRI brain imaging [29,30] and 
MEG brain imaging [81], and psychophysical tasks of movement 
discrimination relative to a stationary background [40-45,51], 

5. MT using motion coherence for direction discrimination [37-
39,50,82,83], 

6. the Lateral IntraParietal cortex (LIP) and Frontal Eye Fields 
(FEF), anterior cortical areas activated by saccades, based on saccade 
and anti-saccade training tasks [84], causing text to appear to move, a 
symptom that many dyslexics report [26,27], and 
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7. parietal structures, prefrontal language systems, cerebellum, 
basal ganglia [35], and hubs of the attention networks [81]. 

These results suggest a strong relationship between dorsal stream 
processing and reading ability, such that poor dorsal stream processing 
caused by sluggish magno (motion) cells is associated with slower 
timing and poor reading skills [5,6,19,20,41-45,51-53,77,82,85]. In fact, 
motion sensitivity in individuals predicts orthographic reading skills 
in good and poor readers [86,87]. Dyslexics have sluggish motion cells 
that do not properly signal the pattern-sensitive cells, causing difficulty 
in isolating and identifying the critical elements needed for reading, 
such as the beginning and end of the word before sequentially analyzing 
the letters in the word. Dyslexics thereby lack the ability to process 
sequential information quickly and accurately, causing deficits in both 
reading speed and comprehension. 

The claim that there is no evidence for visual deficits leading 
to dyslexia [88] ignores the multiple lines of converging evidence 
pointing to poor visual dorsal stream functioning being associated 
with poor reading skills, as shown by previous reviews [35,89,90]. 
Earlier studies [41-45,51] demonstrate that when a movement figure/
ground discrimination assessment is used, poor reading skills are always 
associated with poor visual dorsal stream functioning for all types 
of dyslexics. Moreover, reading skills can be remediated rapidly by 
training that is designed to improve dorsal stream function.

Background frame of reference required to reveal movement 
discrimination deficits in all dyslexics

The key stimulus attribute needed to detect motion discrimination 
deficits are direction discrimination thresholds obtained by measuring 
the contrast sensitivity for the direction of motion relative to a 
stationary textured background [91]. Only when the direction of 
motion is discriminated against a stationary textured background 
frame of reference do both dysphonetic and dyseidetic dyslexics, 
those dyslexics with pronunciation and/or spelling problems, exhibit 
a significantly impaired ability to discriminate the direction of motion 
[40-45,51,58,73], whereas when movement discrimination was done 
against no background, only dysphonetic dyslexics [92] had movement 
discrimination deficits. Since direction-discrimination employs 
inhibitory circuits [93], this indicates that dyslexics have a developmental 
deficit in the functioning of their inhibitory circuits, which is supported 
by their impulsive behavior. Patterned backgrounds, as opposed 
to featureless backgrounds, require figure/ground discrimination, 
suggesting that a core deficit in dyslexics may be difficulty in 
discriminating the movement of an object relative to its background, 
this task being analyzed within the dorsal stream. Movement figure/
ground discrimination deficits are consistent with the dyslexic’s deficits: 
1) being primarily due to deficits in the spatiotemporal parsing of the 
letter stream [52-54,59], normally transmitted both by feedforward 
magnocellular (low-contrast movement) input, and from feedback 
at the attended location from lateral inferior-parietal (LIP) to middle 
temporal (MT) [85], and from MT to V1 (primary visual cortex) [70], 
and 2) in excluding noisy backgrounds [94,95]. 

Previous results [44,45,51,96,97] support the hypothesis that 
multifrequency backgrounds confer an advantage when discriminating 
the direction of motion, by providing a wider, more structured 
background frame of reference. Even though the dorsal stream consists 
of predominantly magnocellular neurons, there is input to the dorsal 
stream from parvocellular neurons [61,98-100] from the LGN, V1, and 
V4, all projecting to MT, enabling parvocellular activity to provide a 
background frame of reference for discriminating the direction of 

movement in the dorsal stream. Movement discrimination relative 
to a stationary background takes advantage of MT’s center-surround 
organization [101] to facilitate figure/ground discrimination, enabling 
the person with dyslexia to: improve their reading fluency and 
processing speed, attend to wider regions of space, have better cognitive 
flexibility, and remember more easily. This stationary background 
frame of reference makes motion discrimination easier and reveals that 
all dyslexics have a magnocellular deficit [40-45,51,58,73].

Training to improve movement discrimination improves 
reading, attention and memory

The patented [40,73] PATH (Perception Attention Therapy) to 
Reading (PATH) training, pathtoreading.com, employs movement 
direction-discrimination to measure the contrast that is needed for 
figure/ground discrimination of sinewave gratings (dim gray stripes 
less than 2% contrast) that move left or right relative to a stationary 
background [45]. These backgrounds increase the task’s complexity 
by increasing the number of background spatial frequencies from 1 
to 3, providing a wider background frame of reference by recruiting 
additional spatial frequency channels, the background contrast from 
5% to 10% to 20%, thereby activating more parvocellular neurons, with 
left-right movement increasing in speed after each four complexity 
levels, from 6.7 Hz to 8 Hz to 10 Hz to 13.3 Hz, as the training progresses. 
Movement could not be discriminated at faster speeds until the person 
was trained to discriminate left-right movement at the slower speeds, 
which is why PATH training progresses from slower to faster speeds 
of movement. These movement-discrimination training patterns, 
vertical sinewave gratings, are designed to differentially activate 
motion-sensitive (magnocellular) neurons in the V1-MT network 
[63,70,100-102] relative to pattern-sensitive (parvocellular) neurons, 
thereby being an effective training stimulus to improve magno-parvo 
integration timing deficits at both early and higher levels of visual 
motion processing. 

Since motion coherence only activates the motion-sensitive 
neurons at MT and at higher processing levels [103,104], direction 
discrimination using motion coherence, instead of the vertical 
sinewave gratings that are used for PATH training, has not been found 
to be an effective training paradigm [105]. Studies that have questioned 
the hypothesis that dyslexics have magnocellular deficits [106-108] 
examined a dyslexic’s sensitivity to stimuli that are not optimal for 
activating direction-selective cells in the V1-MT network [102,109], 
using either flicker or high contrast random dot patterns against no 
background pattern. 

Visual timing deficits were detected and remediated for all types of 
dyslexics when PATH movement-discrimination training was done for 
only 15-20 minutes 2-3 times a week for 12 weeks. This training also 
significantly improved reading fluency, processing speed, attention, 
and working memory, which are all high-level cognitive functions [41-
45,51]. Reading speed has been shown to correlate with comprehension, 
grade level, spelling ability, and a host of other reading skills. PATH 
neurotraining improved working memory and attention by improving 
dorsal stream function at both low and high levels of processing [51]. 
Based on the data from a previously published study [51] obtained from 
21 participants undergoing PATH neurotraining, an effect size (Cohen’s 
d) of 0.9, 1.2, 0.8, 1.0, 1.1, and 1.1 was found for reading speed, reading 
comprehension, pronunciation, attention, visual working memory, and 
auditory working memory, respectively, by examining the interaction 
term between Training and Time. These effect sizes are substantially 
larger than reported in a meta-analysis examining methods to improve 
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reading skills in dyslexics [110]. After a short amount of PATH 
movement-discrimination training was completed by dyslexic fourth 
graders, three times/week for 6 weeks, their dorsal stream activity 
improved significantly when measured by Visual Evoked Potentials 
[33]. These results are consistent with a recent pilot study using 
magnetoencephalography (MEG) source imaging [81] that found 
improved functioning in both the dorsal stream (V1, V3, MT, MST 
areas) and fronto-parietal attention networks (ACC, precuneus/PCC, 
DLPFC) following 8 weeks of movement-discrimination training for 
10-15 minutes twice a week for an adult who was a 29 year-old dyslexic. 

These improvements in cognitive skills found for dyslexics 
following PATH movement-discrimination training were not found 
for computer-based repeated reading using Raz-Kids [51]. When 
compared to PATH neurotraining, repeated reading interventions do 
less to improve reading fluency, as supported by finding: 1) reading 
speeds improved only 2-fold following repeated reading exercises 
[4], instead of from 3-fold to 10-fold, when reading aloud with a 
student following PATH neurotraining [44], and 2) improvements in 
comprehension using repeated reading interventions are much lower 
than found using PATH neurotraining. For example, Vadasy & Sanders 
[4] found that repeated reading aloud improved comprehension 8%, 
assessed by the Gray Oral Reading Test (GORT), whereas PATH 
neurotraining improved comprehension, when assessed by the GORT, 
28% for dyslexic students and 37% for typically-developing students 
[51], even though each group trained for half as much time as done by 
Vadasy & Sanders [4]. The improvements in cognitive skills following 
PATH training were also found in typically developing children [51] 
who were in second and third grade (6 to 8 years old), which is the 
age when the temporal lobe shows peak synaptogenesis [111]. PATH 
movement-discrimination training was also found to significantly 
improve reading fluency in typically developing 6 to 8 year-old children 
previously [40,42,43,51]. Since timing deficits can be reduced following 
training using PATH movement-discrimination brain exercises 
[45,51], this supports the hypothesis that magnocellular pathways 
provide the gateway for attentive processing [52,59] and reading.

The movement direction-discrimination intervention (PATH 
neurotraining) is believed to change the timing of neural responses 
to accelerate [40,44,45,73] via intensive training of the dorsal stream, 
improving magnocellular relative to parvocellular activity, thereby 
improving inhibitory and excitatory circuits, based on the data from 
neural plasticity. This theory is based on the idea that the synchronous 
firing of neurons is what controls communication in the brain between 
different areas [112]. If neurons in one area are “sluggish” with respect to 
neurons in another area, then they will be unable to synchronize, since 
processing speed will be slowed down, and therefore communication, 
and hence learning, will be compromised. By extensive training on 
movement-discrimination, we hypothesize that we are improving 
the attention, executive control, and reading networks. Visually 
based movement discrimination exercises in both normal subjects 
[40,42,43,51,96,97,113] and dyslexics [40-45,51] have demonstrated 
neuroplasticity in the domain of processing speed using massed practice. 
These studies found that the more movement discrimination was 
practiced, the more contrast sensitivity for movement-discrimination, 
reading, attention, and memory skills improved, with gains in speed, 
accuracy, comprehension, attention, and working memory being 
measured using age-appropriate standardized tests for these cognitive 
skills. Not only was PATH training more effective, but it required less 
than half the training time used by other reading interventions. 

Improving magnocellular function improves feedback from 
high cortical areas to lower levels

When reading, it has been proposed that the PPC uses the spatial 
information of the location and overall shape and form of a word 
that is received  through the rapid magnocellular pathway to gate 
the information that is going into the temporal stream [52]. The 
information is gated via attentional feedback to the striate cortex and to 
other regions in the occipito-temporal cortex [52,59,114,115,116] most 
likely done by top-down feedback which uses synchronized neuronal 
oscillations at the lower end of the gamma frequency range [59], which 
in turn is used by the parvocellular neurons in the ventral stream, 
using coupled alpha/gamma oscillations regulated by the pulvinar for 
sequential processing [117], as a starting point for deciphering the 
individual letters [52,59]. In fact, the visual word form area (VWFA) 
in the ventral stream, where the visual shapes of words are analyzed 
in detail [10] receive significant magnocellular input from the dorsal 
stream to direct the VWFA’s attention to which word it should analyze 
next [59,118]. It is likely that the dyslexic reader’s deficit in attentional 
focus [52,53,119,120] is a consequence of sluggish magnocellular 
neurons that prevents the linked parvocellular neurons from being 
able to isolate and sequentially process the relevant information that is 
needed for reading [49,52,53], and not from an information overload as 
was proposed previously [121]. 

Each cycle of gamma oscillation focuses an attentional spotlight 
on the primary visual cortical representation of just one or two letters, 
before sequential recognition of those letters and their concatenation 
into word strings [59]. The timing, period, envelope, amplitude, and 
phase of the synchronized oscillations that is modulating the incoming 
signals to the striate cortex have a profound influence on the accuracy 
and the speed of reading [59]. The speed determined by the gamma 
frequency oscillation is the essential rate-limiting step in dyslexia [59]. 
Movement figure/ground discrimination training is likely to strengthen 
coupled: 1) theta/gamma activity for the test patterns moving at 6.7 and 
8 Hz, and 2) alpha/gamma activity for the test patterns moving at 10 
and 13.3 Hz, the patterns that improved in contrast sensitivity the most 
after doing PATH neurotraining [44,45,51]. Since the highest contrast 
sensitivities were found for patterns moving from 10-13 Hz, unable 
to be discriminated before training at slower speeds, these results 
contradict Goswami’s [122] temporal sampling framework theory that 
states the key timing deficits in dyslexia are for movement less than 
10 Hz. These results indicate that the visual movement-discrimination 
training paradigm improved not only magnocellular function and 
attention, but also improved magno-parvo integration, figure/ground 
discrimination, and coupled theta/gamma and alpha/gamma frequency 
oscillations. 

These studies [45,51] found that improving visual motion direction-
discrimination sensitivity and timing (low-levels in the dorsal stream) 
significantly improved processing in the neural networks at high levels 
of cognitive processing, those that mediate attention, reading, and 
working memory (executive control) in both typically-developing and 
dyslexic students. MEG brain imaging studies [81,123] indicate that 
these improvements were found by improving the V1-MT network 
(low levels in the dorsal stream), which improved functioning at higher 
levels in the dorsal stream, including the PPC, the DLPFC, and the 
attention networks. Improving the function of the PPC is consistent 
with the behavioral improvements found after PATH neurotraining in: 
1) attention, since selective endogenous attention is encoded in the PPC 
[67,124,125], and 2) working memory, since the PPC projects to the 
DLPFC, where working memory is encoded [69]. Moreover, the control 
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of spatial attention in early visual cortex is directed by regions of the 
PPC [114-116], as well as the DLPFC [126,127]. Furthermore, since 
both phonological processing and auditory working memory were 
shown to improve following visual movement-discrimination training, 
these improvements demonstrate that visual movement-discrimination 
training also improves auditory skills, providing more evidence that 
PATH neurotraining improves the PPC, where there is a convergence 
of both auditory and visual inputs [128]. By improving attention, students 
were able to hear the sequential ordering of sounds more accurately, 
improving phonological processing and auditory working memory [45]. 

Reading skills improved more by increasing visual 
timing than by increasing auditory timing

Improving visual timing was shown to improve phonological 
deficits and auditory working memory more than auditory timing 
interventions like FastForWord [45]. FastForWord training lengthens 
individual phonemes so that phonological processing improves, with 
the length of the phonemes being decreased as the training progresses. 
PATH training, on the other hand, measures the contrast needed for 
visual movement direction-discrimination. Only visual movement-
discrimination training when it was compared to phonological training, 
either by improving auditory timing (FastForWord) or word building 
strategies (Learning Upgrade), significantly improved both low and 
high level cognitive functions [45]: 1) motion direction sensitivity, 
2) speed of processing for both motion direction-discrimination and 
reading rates, 3) reading comprehension, 4) phonological processing, 5) 
attention, and 6) both auditory and visual working memory, including 
delayed recall. Moreover, when PATH neurotraining was followed by 
oral guided reading for 5 minutes [44], reading speeds increased by 
as much as 11-fold, and on average were over three times faster than 
found previously, providing more evidence that PATH neurotraining 
improves PPC functioning. These results indicate that movement-
discrimination training improves the sensitivity and timing of sluggish 
magnocellular neurons (improving dorsal stream function), relative 
to parvocellular neurons early in the dorsal stream, as evidenced by 
improved movement-discrimination contrast sensitivity at higher 
background contrasts and temporal frequencies following movement-
discrimination training. 

Studies using movement figure/ground discrimination (PATH 
neurotraining) provide additional evidence that visual motion 
processing is fundamental for paying attention, good reading 
performance, and remediating reading deficits, improving high level 
cognitive processes, which is contrary to common practice based on 
the assumption that only auditory-based phonological processing can 
be used to remediate reading deficits [7,10,11,12,15-17]. Students given 
training aimed at improving the auditory timing of magno cells, as 
embodied by the FastForWord program, improved in reading fluency, 
but the improvements were not significant when they were compared 
to the improvements made by controls [45], as also found in a review of 
FastForWord studies [129]. 

Moreover, the more students improved on movement direction-
discrimination, the more they improved on higher level cognitive 
skills, especially in reading speed and comprehension [42,44]. 
Remediating visual timing deficits in the dorsal stream improved 
reading and attention, which suggests a causal role of visual movement-
discrimination training and attention in reading acquisition. These 
studies: 1) support the hypothesis that faulty timing in synchronizing 
the activity of magnocellular with parvocellular visual pathways in 
the dorsal stream is a fundamental cause of dyslexia, 2) argue against 

the assumption that reading deficiencies in dyslexia are caused by 
phonological or language deficits, and 3) demonstrate that visual 
movement discrimination is not only a correlate of dyslexia for children 
and typically-developing students at-risk for reading problems, but it is 
also a successful treatment. Therefore, a paradigm shift in the detection 
and the treatment of dyslexia from improving phonological processing 
to improving visual movement figure/ground discrimination is needed.

Improving visual dorsal stream function remediates 
reading fluency, attention span, and memory retention

The sluggish magnocellular neurons in dyslexics not only result 
in attention deficits, an impairment in the low gamma frequencies 
that reduce feedback to visual cortical areas [59], but it also disrupts 
processing in LIP and FEF, either within a fixation, between a fixation 
sequence, or both [52,84,130,131], causing very slow reading speeds. 
Moreover, finding that movement-discrimination training improved 
not only reading fluency, but also selective and sustained attention, and 
working memory when done before reading [45,51,81,123] indicates 
that movement-discrimination training helps develop the attention 
and executive control networks, since fewer resources are used to 
decode incoming information, so that more resources can be used to 
analyze the information, which improves visual, attention, reading, 
and memory skills. These results provide more evidence showing that 
abnormal visual motion processing is a fundamental cause of reading 
and attention problems in dyslexia and other cognitive slow-downs, 
like those caused by a concussion [123]. By improving the attention 
network’s functioning, movement-discrimination training provides 
a wider window of attention, so that more objects are perceived in 
their correct location in a single glance [132]. Movement direction-
discrimination training improves the ability to detect the synchronicity 
of multiple objects in space and see their trajectories over time, most 
likely by increasing the ease of magno-parvo integration, thereby 
facilitating figure/ground discrimination within a wider window of 
focused attention [51]. Moreover, there is evidence that improvements 
in reading speed after movement-discrimination training are sustained 
over time [44], whereas improvements in word reading found following 
auditory interventions to improve phonological processing degrade over 
time, two years later showing no difference in word reading skills when 
compared to controls who did not complete the auditory intervention [28]. 

Improving cognitive function by training left-right movement 
discrimination relative to a background is a novel method [40,73] that 
was found to be both rapid and effective in improving cognitive skills 
in dyslexics. Only when low-level visual timing deficits are remediated 
in those with dyslexia are the improvements in high-level cognitive 
functions, such as reading fluency (speed and comprehension), 
attention, and working memory improved quickly, with improvements 
that are sustained over time [44]. PATH neurotraining is the first 
visually-based intervention that was found to improve both low-
level movement discrimination in the dorsal stream and high-level 
cognitive functioning, both behaviorally and using MEG brain 
imaging, improving the attention and the executive control networks. 
Since movement-discrimination (PATH) neurotraining is so rapid and 
effective, it offers a new approach that represents a paradigm shift in 
the treatment of dyslexia, one that is based on improving visual timing 
instead of improving phonological timing. When reading, students who 
allocate all their resources to identify the letters in the word, instead 
of allocating their resources to interpret a sentence, understand its 
meaning, and integrate the information into their existing knowledge 
need movement figure/ground discrimination training to remediate 
their visual timing deficits.
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Conclusions
Visual movement figure/ground discrimination can be used 

to not only diagnose all types of dyslexia, but also for the successful 
treatment of dyslexia, so that reading, and learning can be done more 
automatically. What emerges from multiple studies is the essential role 
of dorsal stream function to facilitate reading fluency, selective and 
sustained attention, and working memory. Training visual dorsal stream 
function at low levels (V1-MT pathways) significantly improved these 
high-level cognitive functions, hypothesized to result from increasing 
the temporal precision and neuronal sensitivity of magnocellular 
neurons relative to linked parvocellular neurons in the dorsal stream. 
PATH movement-discrimination training was faster and more effective 
in improving reading, attention, and memory than found after training 
on: 1) repeated reading interventions, 2) interventions designed to 
improve auditory timing, or 3) linguistic-based reading interventions. 
Remediating visual timing deficits in the dorsal stream revealed the 
causal role of visual movement discrimination training to facilitate 
reading acquisition in dyslexics and typically developing students 
between the ages of 6 to 8 years old. Moreover, this research supports 
the hypothesis that faulty timing in synchronizing the activity of 
magnocellular with parvocellular visual pathways in the dorsal stream is 
a fundamental cause of dyslexia and argues against the assumption that 
reading deficiencies in dyslexia are caused by phonological or language 
deficits. These studies indicate that a paradigm shift in treating dyslexia 
from phonologically-based to visually-based methods is essential. 
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